

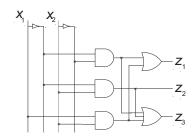
Wy ugr

Sumario

- > Introducción
 - ✓ Síntesis NAND/NOR
 - ✓ Riesgos en circuitos combinacionales
- > Multiplexores y demultiplexores
 - ✓ Diseño con multiplexores
 - ✓ Acceso a buses y selección de datos
- > Codificación
 - ✓ Representación en complementos
 - ✓ Aritmética decimal BCD
 - √ Codificadores y decodificadores
 - ✓ Circuitos aritméticos

Introducción

Circuito de conmutación (digital): cualquier sistema mecánico, eléctrico, etc., con entradas y salidas digitales (binarias).



<i>X</i> ₁	<i>X</i> ₂	<i>z</i> ₁	Z ₂	Z ₃
0	0	1	0	1
0	1	1 0 0	1	1
1	0	0	0	0
1	1	1	0	1

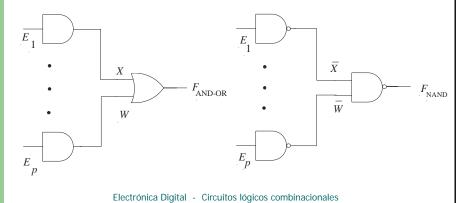
Electrónica Digital - Circuitos lógicos combinacionales

Introducción

- > Los circuitos combinacionales básicamente corresponde a la implementación de una o varias funciones de conmutación.
- Los procedimientos de síntesis vistos en el tema anterior proporcionan implementaciones en dos niveles: AND-OR (suma de productos) y OR-AND (producto de sumas).
- > Es posible trasladar las realizaciones en dos niveles a implementaciones con puertas **NAND** o puertas **NOR**.

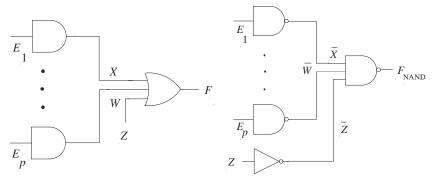
Síntesis NAND/NOR

➤ Teorema: dado un circuito de dos niveles AND-OR (OR-AND), si todas las puertas del circuito se sustituyen por puertas NAND (NOR), la función realizada es la misma.



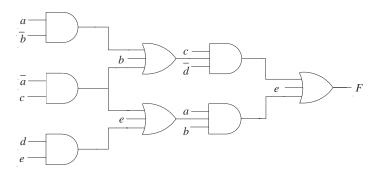
Síntesis NAND/NOR

Teorema: dado un circuito de dos niveles AND-OR (OR-AND), si todas las puertas del circuito se sustituyen por puertas NAND (NOR), la función realizada es la misma.



Síntesis NAND/NOR

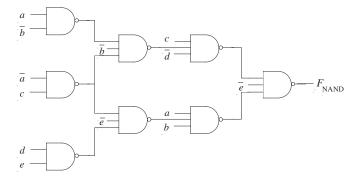
> Esta idea puede extenderse a circuitos con más de dos niveles, con una adecuada descomposición del circuito original.

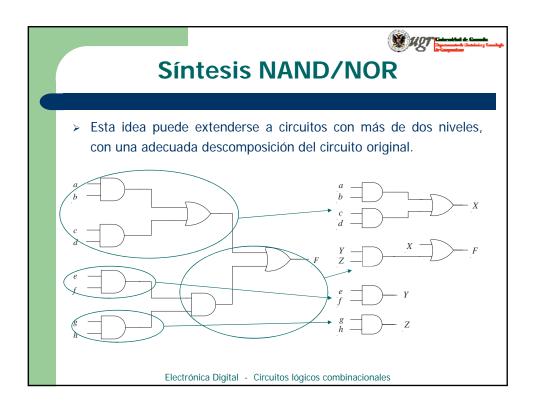


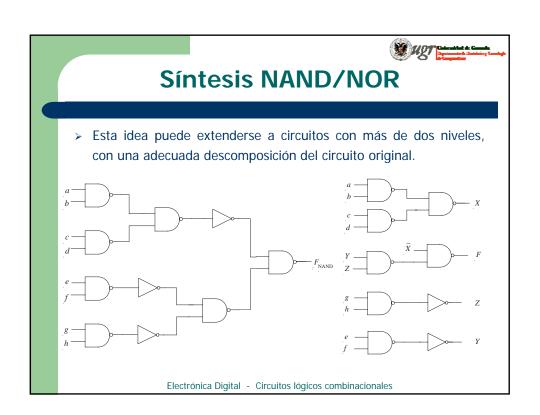
Electrónica Digital - Circuitos lógicos combinacionales

Síntesis NAND/NOR

> Esta idea puede extenderse a circuitos con más de dos niveles, con una adecuada descomposición del circuito original.

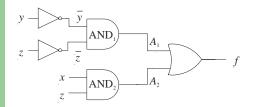






Riesgos en circuitos combinacionales

- > En un circuito combinacional existe un **riesgo estático** si en una transición de las entradas en la que la salida debe de permanecer constante, ésta cambia su valor momentáneamente.
- > **Ejemplo:** $f(x,y,z)=xz+\overline{y}\overline{z}$



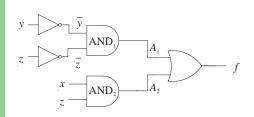
x^{yz}	00	01	11	10
0	1			
1	1 +	- 1	1	

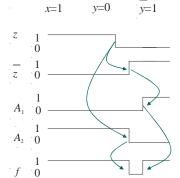
Electrónica Digital - Circuitos lógicos combinacionales

wugr

Riesgos en circuitos combinacionales

- > En un circuito combinacional existe un **riesgo estático** si en una transición de las entradas en la que la salida debe de permanecer constante, ésta cambia su valor momentáneamente.
- > **Ejemplo:** $f(x,y,z)=xz+\overline{yz}$





Riesgos en circuitos combinacionales

- > En un circuito combinacional existe un **riesgo dinámico** si en una transición de las entradas en la que la salida ha de cambiar de 0 a 1, o viceversa, la salida sufre transiciones extras antes de alcanzar su valor final.
- Los riesgos estáticos o dinámicos asociados a transiciones de las entradas en las que sólo cambia una entrada se denominan riesgos lógicos.
- Los riesgos lógicos están provocados por los retardos asociados a la propagación de las señales en los circuitos de conmutación.
- Los riesgos dinámicos son consecuencia de los estáticos (evitables si la realización incluye todos los implicantes primos).

Electrónica Digital - Circuitos lógicos combinacionales

Riesgos en circuitos combinacionales

- Los riesgos asociados a transiciones de las entradas en las que cambia más de una entrada se denominan riesgos funcionales.
- > Los riesgos funcionales no dependen de la forma del realización ni de la función concreta, al tiempo que son inevitables (salvo que se limiten las transiciones en la entrada a cambios individuales).

xy	.00	01	11	10
00	1-	→		
01	\ _	→ 1	1	-1
11			1 -	_+
10	1	1		

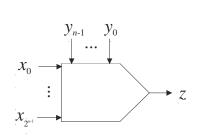
Sumario

- > Introducción Introducción
 - ✓ Síntesis NAND/NOR
 - ✓ Riesgos en circuitos combinacionales
- > Multiplexores y demultiplexores
 - ✓ Diseño con multiplexores
 - ✓ Acceso a buses y selección de datos
- Codificación
 - ✓ Representación en complementos
 - ✓ Aritmética decimal BCD
 - ✓ Codificadores y decodificadores
 - ✓ Circuitos aritméticos

Electrónica Digital - Circuitos lógicos combinacionales

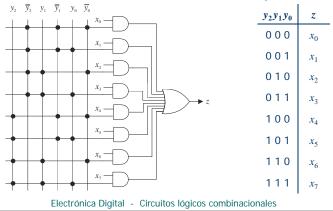
Multiplexores y demultiplexores

➤ Un multiplexor es un circuito combinacional para el enrutamiento de la información. Consta de n entradas de control y 2ⁿ entradas de datos, con una única salida (multiplexor 2ⁿ a 1).



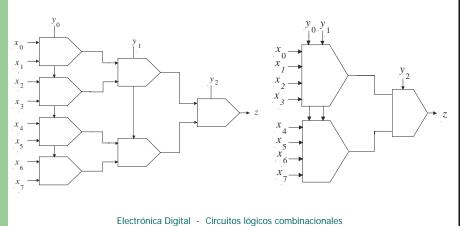
$y_2y_1y_0$	z
0 0 0	x_0
0 0 1	x_1
0 1 0	x_2
0 1 1	x_3
100	x_4
101	<i>x</i> ₅
110	x_6
111	<i>x</i> ₇

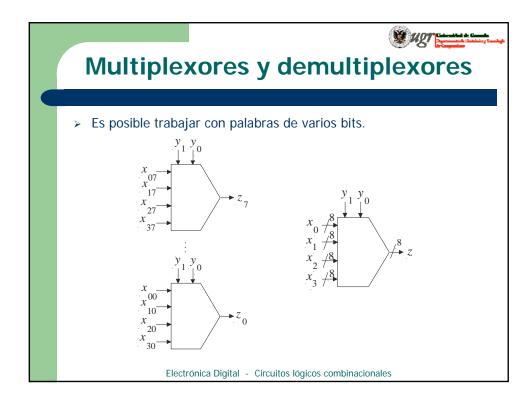
Un multiplexor es un circuito combinacional para el enrutamiento de la información. Consta de n entradas de control y 2ⁿ entradas de datos, con una única salida (multiplexor 2ⁿ a 1).



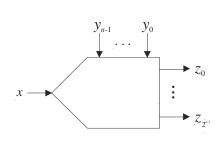
Multiplexores y demultiplexores

> Pueden combinarse multiplexores 2 a 1, 4 a 1, etc., para conseguir diferentes estructuras.



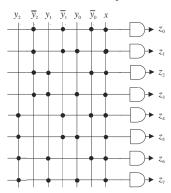


 \triangleright Un **demultiplexor** es un circuito combinacional para el enrutamiento de la información. Consta de n entradas de control, una entrada de datos y 2^n salidas (demultiplexor 1 a 2^n).



$y_2 y_1 y_0$	z ₇	z_6	z_5	z_4	z_3	z_2	z_1	z_0
0 0 0	0	0	0	0	0	0	0	х
0 0 1	0	0	0	0	0	0	x	0
010	0	0	0	0	0	x	0	0
0 1 1	0	0	0	0	х	0	0	0
100	0	0	0	x	0	0	0	0
1 0 1	0	0	x	0	0	0	0	0
110	0	x	0	0	0	0	0	0
000 001 010 011 100 101 110	х	0	0	0	0	0	0	0

> Un **demultiplexor** es un circuito combinacional para el enrutamiento de la información. Consta de n entradas de control, una entrada de datos y 2^n salidas (demultiplexor 1 a 2^n).

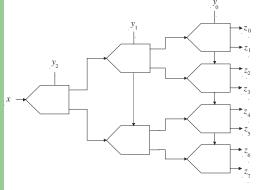


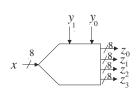
$y_2 y_1 y_0$	z ₇	z_6	z_5	z_4	z_3	z_2	z_1	z_0
0 0 0	0	0	0	0	0	0	0	х
0 0 1	0	0	0	0	0	0	х	0
0 1 0	0	0	0	0	0	x	0	0
0 1 1	0	0	0	0	x	0	0	0
100	0	0	0	х	0	0	0	0
1 0 1	0	0	х	0	0	0	0	0
110	0	x	0	0	0	0	0	0
y2y1y0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1	х	0	0	0	0	0	0	0

Electrónica Digital - Circuitos lógicos combinacionales

Multiplexores y demultiplexores

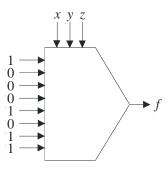
> Pueden combinarse demultiplexores 1 a 2, 1 a 4, etc., para conseguir diferentes estructuras, o trabajar con palabras de varios bits.





- Los multiplexores pueden emplearse como módulos lógicos universales:
 - \checkmark un multiplexor con n entradas de control permite sintetizar cualquier función de conmutación de n variables.

xyz	f(x,y,z)
000	1
0 0 1	0
010	0
011	0
100	1
101	0
110	1
111	1



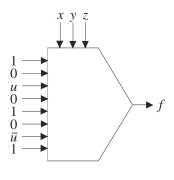
Electrónica Digital - Circuitos lógicos combinacionales

Qugr

Multiplexores y demultiplexores

- Los multiplexores pueden emplearse como módulos lógicos universales:
 - \checkmark un multiplexor con n entradas de control puede sintetizar funciones de conmutación de n+1 variables.

x y z	f(x,y,z)
000	1
0 0 1	0
010	и
0 1 1	0
100	1
101	0
110	\overline{u}
111	1



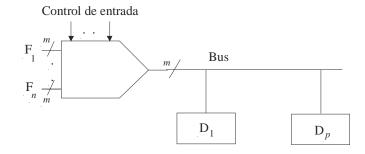
Acceso a buses

- ➢ Bus: subsistema para transmisión de información en un sistema digital formado por m hilos, siendo m el número de bits a transmitir simultáneamente.
- ➤ En sistemas digitales complejos, gran cantidad de subsistemas han de compartir información, con lo que se incluyen diferentes buses a los que tiene acceso diferentes subsistemas.
- La conexión directa de las diferentes fuentes y destinos de información a los buses, así como la interconexión entre diferentes buses puede causar conflictos (tema 5), que pueden evitarse con el uso de multiplexores y demultiplexores.

Electrónica Digital - Circuitos lógicos combinacionales

Acceso a buses

➢ Bus: subsistema para transmisión de información en un sistema digital formado por m hilos, siendo m el número de bits a transmitir simultáneamente.



Sumario

- > Introducción
 - ✓ Síntesis NAND/NOR
 - ✓ Riesgos en circuitos combinacionales
- > Multiplexores y demultiplexores
 - ✓ Diseño con multiplexores
 - ✓ Acceso a buses y selección de datos
- Codificación
 - ✓ Representación en complementos
 - ✓ Aritmética decimal BCD
 - ✓ Codificadores y decodificadores
 - ✓ Circuitos aritméticos

Electrónica Digital - Circuitos lógicos combinacionales

Codificación

- > **Sistema digital:** sistema en el que se genera, almacena, procesa y/o transmite información representada por señales digitales.
- Señal digital: señal limitada a tomar valores discretos determinados.
- > Bit: cantidad mínima de información (0/1).

Codificación

- Cuando los sistemas digitales procesan información que no es estrictamente binaria, es necesario representar dicha información utilizando señales binarias: codificación.
- > Existen diferentes códigos para representar la información en función de su contenido y la aplicación:
 - ✓ codificación ASCII (*American Standard Code for Information Interchange*): caracteres alfanuméricos para su uso en ordenadores.
 - Representación en complementos: la más extendida en circuitos aritméticos.
 - ✓ BCD (*Binary-Coded Decimal*): codificación binaria de cifras decimales.
 - ✓ Códigos para detección y corrección de errores.

Electrónica Digital - Circuitos lógicos combinacionales

Representación en complementos

- > El cálculo es una de las aplicaciones fundamentales de los sistemas digitales.
- > La implementación de sistemas digitales de cálculo requiere la representación con señales binarias de las cantidades numéricas.
- > En general, los sistemas digitales usan la base 2 en representaciones con peso, con lo que un número con *n* bits en la parte entera y *m* en la parte fraccionaria representa la cantidad:

 $N.M = \underbrace{b_{n-1}2^{n-1} + ... + b_2 2^2 + b_1 2^1 + b_0 2^0 + b_{-1}2^{-1} + b_{-2}2^{-2} + ... + b_{-m}2^{-m}}_{\text{Parte entera}}$

> b_{n-1} : bit más significativo (MSB)

 b_{-m} : bit menos significativo (LSB)

Representación en complementos

> En esta representación en punto fijo la aritmética es muy sencilla, siendo la suma la operación básica:

Electrónica Digital - Circuitos lógicos combinacionales

Complemento a uno

> En la representación en complemento a uno (a la base menos uno), dado un número positivo $B=b_{n-1}...b_1b_0$, el número -B se genera como:

$$-B = (2^n-1) - B$$

> En la práctica, el complemento a uno se genera muy fácilmente complementando cada uno de los bits del número:

$$-B=\overline{b_{n-1}}...\overline{b_1}\overline{b_0}$$

Para operar con cantidades en complemento a uno hay que añadir el posible acarreo de salida al bit menos significativo.

Complemento a dos

► En la representación en complemento a dos (a la base), dado un número positivo $B=b_{n-1}...b_1b_0$, el número -B se genera como:

$$-B=2^n-B$$

En la práctica, el complemento a dos se genera complementando cada uno de los bits del número y sumando 1.

$$-B = \overline{b_{n-1}}...\overline{b_1}\overline{b_0} + 1$$

> El complemento a dos es el sistema usual de representación en punto fijo en sistemas digitales de cálculo.

Electrónica Digital - Circuitos lógicos combinacionales

Complemento a dos

- > La gran ventaja de la representación en complemento a dos es:
 - se puede operar como en binario natural sin ninguna consideración extra
 - el bit más significativo corresponde al bit de signo (0 para números positivos y 1 para números negativos)

Complemento a dos

- > La gran ventaja de la representación en complemento a dos es:
 - ✓ se puede operar como en binario natural sin ninguna consideración extra
 - ✓ el bit más significativo corresponde al bit de signo (0 para números positivos y 1 para números negativos)
- Aparecerá desbordamiento (overflow) cuando la suma de dos números positivos (negativos) produzca uno negativo (positivo):

Electrónica Digital - Circuitos lógicos combinacionales

Aritmética decimal BCD

- > La mayoría de sistemas digitales de cálculo emplean representación en complementos.
- En ocasiones es conveniente emplear aritmética decimal, representando cada cifra decimal por su valor binario: BCD (Binary-Coded Decimal).
- > Cada cifra decimal se codifica con 4 bits y agrupando estos caracteres de 4 bits se pueden representar cantidades decimales:

Aritmética decimal BCD

Es posible operar con cantidades representadas en BCD con una adecuada corrección (+6) en caso de generarse acarreo entre cifras:

Electrónica Digital - Circuitos lógicos combinacionales

Códigos para detección de errores

- > El único objeto de la codificación no es la representación de la información, sino que puede emplearse para detectar y/o corregir los posible errores que se produzcan en el sistema.
- > Durante la transmisión y almacenamiento de la información es posible que se altere el valor de algún bit (corrientes de fuga, radiación, etc.).
- > **Distancia** entre dos caracteres de un código: número de bits en que son distintos dichos caracteres. Los códigos vistos hasta ahora son de distancia 1.

Códigos para detección de errores

- Los códigos de distancia 2 permiten detectar errores en un bit, ya que la alteración de una posición se traduce en un carácter que no pertenece al código.
- En los códigos de distancia 1 se puede añadir un bit extra de paridad (del número de 1s del carácter), con lo que se transforman en códigos de distancia 2 y pueden corregirse errores en un bit.
- ➤ En general, un código de distancia n permite detectar errores en n-1 bits de un carácter.

Electrónica Digital - Circuitos lógicos combinacionales

Códigos para corrección de errores

- > Empleando un código de distancia 3 es posible detectar errores en dos bits, y corregir errores en uno de los bits.
- > Ejemplo:

A 00000 B 10101 C 11010 D 01111

- ✓ Un error en un bit de A puede traducirse en la recepción indistinta de 00000, 00001, 00010, 00100, 01000 ó 10000, que no pueden provenir de ningún otro carácter.
- ✓ Por tanto, el código del ejemplo permite corregir errores.

Códigos para corrección de errores

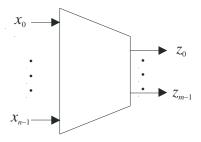
- ➤ **Código Hamming:** código de 2^n -1 bits (n≥2), de los que n son de paridad y 2^n -1-n contienen información.
 - √ cada bit de paridad (posición potencia de 2) establece paridad par entre él mismo y determinados bits de información

	$P_4P_2P_1$		$C_4C_2C_1$	Error
	000		0 0 0	Ninguno
1	001		0 0 1	1
2	010	$I_7I_6I_5P_4I_3P_2P_1$	010	2
3	011		0 1 1	3
4	100	(n=3)	100	4
5	101		101	5
6	110		110	6
7	111		111	7

Electrónica Digital - Circuitos lógicos combinacionales

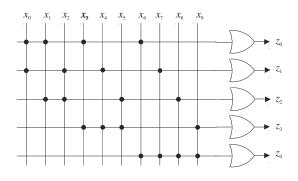
Codificadores y decodificadores

 \triangleright Un **codificador** es un circuito combinacional con n (número de caracteres a codificar) entradas y m (número de bits del código) salidas (codificador de n a m).



Codificadores y decodificadores

➤ Un codificador es un circuito combinacional con n (número de caracteres a codificar) entradas y m (número de bits del código) salidas (codificador de n a m).



Entrada	$z_4 z_3 z_2 z_1 z_0$
Ninguna	00000
x_0	00011
x_1	00101
x_2	00110
x_3	01001
x_4	01010
<i>x</i> ₅	01100
x_6	10001
<i>x</i> ₇	10010
x_8	10100
x_9	11000
•	•

Electrónica Digital - Circuitos lógicos combinacionales

0 0

0 0

Codificadores y decodificadores

- En los codificadores sin prioridad se supone que sólo una entrada puede estar activa en cada momento.
- En los codificadores con prioridad varias entradas pueden estar activas en cada momento.
- > **Ejemplo:** codificador 4 a 2 con prioridad (3-2-1-0)

$$z_1 = x_2 + x_3$$
 $z_0 = x_1 \overline{x_2} + x_3$

 $x_3x_2x_1x_0$

0001

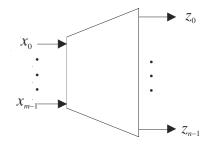
Codificadores y decodificadores

- Muchos códigos para detección y corrección de errores incluyen la generación y comprobación de bits de **paridad**:
 - ✓ la función EXOR permite generar y comprobar la paridad par.
 - ✓ la función EXNOR permite generar y comprobar la paridad impar.
- > Otros circuitos muy habituales son los conversores de código, que permiten transformar los símbolos de un código a otro.

Electrónica Digital - Circuitos lógicos combinacionales

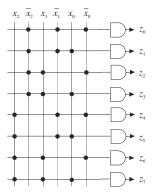
Codificadores y decodificadores

 \succ Un **decodificador** es un circuito combinacional con m (número de bits del código) entradas y n (número de caracteres a codificar) salidas (decodificador de m a n).



Codificadores y decodificadores

> Un **decodificador** es un circuito combinacional con *m* (número de bits del código) entradas y *n* (número de caracteres a codificar) salidas (decodificador de *m* a *n*).

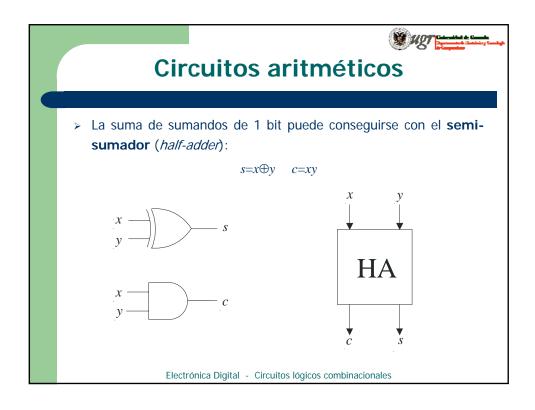


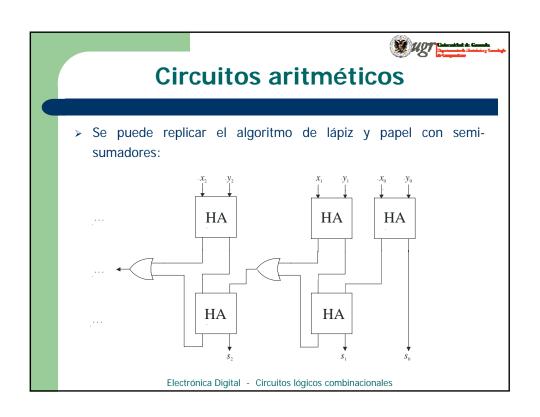
$z_7 z_6 z_5 z_4 z_3 z_2 z_1 z_0$
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Electrónica Digital - Circuitos lógicos combinacionales

Circuitos aritméticos

- > El procesamiento de información en los sistemas digitales está basado normalmente en la realización de operaciones aritméticas:
 - √ aplicaciones de cálculo
 - ✓ aplicaciones basadas en algoritmos matemáticos (procesamiento digital de señales, procesamiento de imágenes, compresión, etc.)
- Una vez que la información de contenido aritmético está representada en la manera más adecuada (complementos, BCD, etc.) se puede procesar con los bloques combinacionales correspondientes.
- > La **suma** es la operación fundamental.

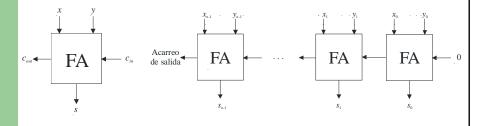




Circuitos aritméticos

> Si se incluyen en cada etapa los acarreos de entrada (c_{in}) y salida (c_{out}) se puede definir el sumador completo (full-adder):

$$s=x\oplus y\oplus c_{in}$$
 $c_{out}=xy+xc_{in}+yc_{in}$



Electrónica Digital - Circuitos lógicos combinacionales

Circuitos aritméticos

> La resta está basada en los mismos principios que la suma, sustituyendo el acarreo por el adeudo:

$$r=x\oplus y$$
 $d=\overline{x}y$

- Otras funciones aritméticas incluyen la suma BCD, comparadores, etc.
- Un bloque muy común en sistemas digitales es la ALU (*Arithmetic-Logic Unit*), que en función de unas entradas de control realiza diferentes operaciones aritméticas para las entradas de datos.